In-Hospital Mortality Prediction

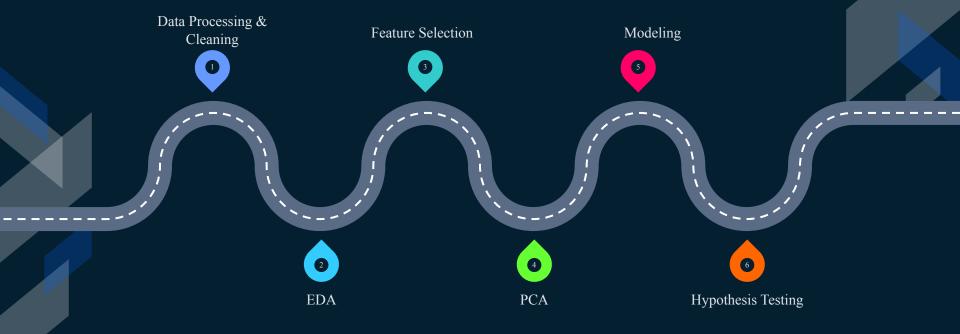
DSEI 103 - Applied Statistics

Nikhita Kannam, Sumaiya Uddin, Shubham Khandale, Allen Lau

Contributions

Nikhita Kannam EDA, Outlier Cleanup, Logistic Regression, KNN

Sumaiya Uddin Data Processing, PCA, Decision Tree, Hypothesis Testing

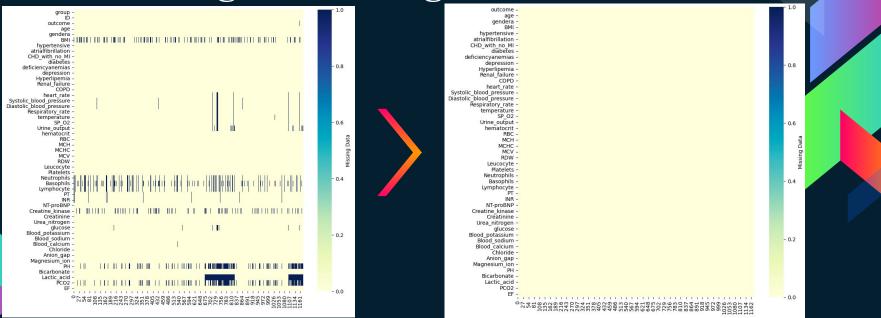


Shubham Khandale Resampling, LASSO, Random Forest, Lime

Allen Lau EDA, Logistic Regression, VIF, Decision Tree

Dataset

- Source: MIMIC-III Database
 - Publicly available database of patient data
 - Admissions to the Intensive Care Unit of the Beth Israel Deaconess Medical Center, in Boston, USA
 - June 1, 2001 October 31, 2012
 - <u>Kaggle Link</u>
- Response Variable
 - Outcome Result of Patient Admission to the ICU
 - $\bullet \quad 0 \rightarrow \text{Alive}$
 - $\bullet \quad 1 \rightarrow \text{Dead}$
- Dataset Summary
 - Number of Features $\rightarrow 51$
 - Number of Data Points $\rightarrow 1177$

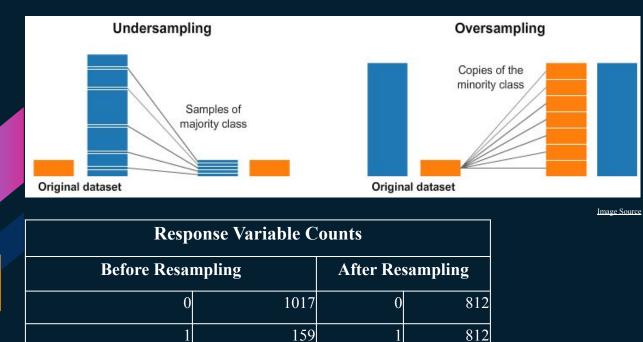

Dataset Features								
group	COPD	MCV	Blood sodium					
ID	heart rate	RDW	Blood calcium					
outcome	Systolic blood pressure	Leucocyte	Chloride					
age	Diastolic blood pressure	Platelets	Anion gap					
gendera	Respiratory rate	Neutrophils	Magnesium ion					
BMI	temperature	Basophils	РН					
hypertensive	SP O2	Lymphocyte	Bicarbonate					
atrialfibrillation	Urine output	РТ	Lactic acid					
CHD with no MI	hematocrit	INR	PCO2					
diabetes	RBC	NT-proBNP	EF					
deficiencyanemias	МСН	Creatine kinase	Hyperlipemia					
depression	МСНС	Creatinine	Renal failure					
Urea nitrogen	glucose	Blood potassium						

Dataset Null Counts							
PC02	294	РТ	20				
РН	292	temperature	19				
Basophils	259	glucose	18				
Lactic Acid	229	Diastolic blood pressure	16				
BMI	215	Systolic blood pressure	16				
Creatine Kinase	165	SP O2	13				
Lymphocyte	145	Respiratory rate	13				
Neutrophils	144	heart rate	13				
Urine Output	36	Blood calcium	1				
INR	20	outcome	1				

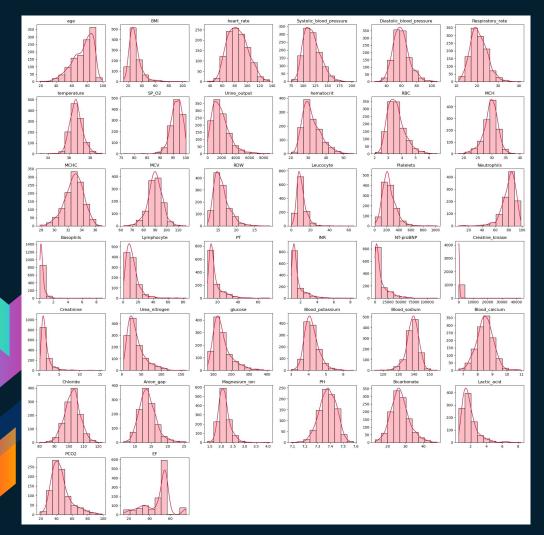
Summary Statistics

	outcome	age	BMI	heart_rate	Systolic_blood_pressure	Diastolic_blood_pressure	Respiratory_rate	temperature	SP_O2
count	1176.000000	1176.000000	962.000000	1164.000000	1161.000000	1161.000000	1164.000000	1158.000000	1164.000000
mean	0.135204	74.047619	30.188278	84.575848	117.995035	59.534497	20.801511	36.677286	96.272900
std	0.342087	13.437241	9.325997	16.0187 <mark>0</mark> 1	17.367618	10.68 <mark>4</mark> 681	4.002987	0.607558	2.298002
min	0.000000	19.000000	13.346801	36.000000	75.000000	24.736842	11.137931	33.250000	75.916667
25%	0.000000	65.000000	24.326461	72.371250	105.391304	52.173913	17.925694	36.286045	95.000000
50%	0.000000	77.000000	28.312474	83.610799	116.12820 5	58.461538	20.372308	36.650794	96.452273
75%	0.000000	85.000000	33.633509	95.907143	128.625000	65.46 <mark>4</mark> 286	23.391200	37.021991	97.917500
max	1.000000	99.000000	104.970366	135.708333	203.000000	107.000000	40.900000	39.132 <mark>4</mark> 78	100.000000

Data Processing & Cleaning

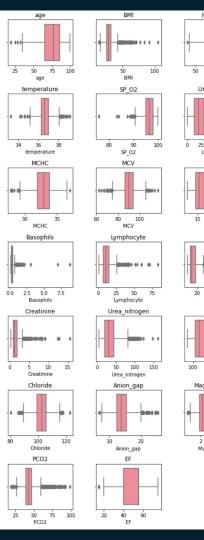

The two heatmaps above display the nulls in each column before and after data processing and cleaning. Some methods we used to clean the data set are:

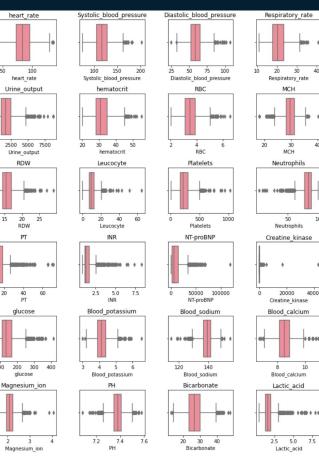
- Dropping columns that are not needed
- Dropping rows that have null values in the data column
- Replacing null values with the median to reduce impact of outliers


Resampling

Response Variable: Outcome

- $0 \rightarrow \text{Alive}$
- $1 \rightarrow \text{Dead}$


Exploratory Data Analysis



Majority of distributions are right skewed, meaning that most of the data is on the left end. The mean is greater than the median.

Majority of distributions are unimodal.

Standard deviations and the scale of the features vary, indicating the need to standardize the data.

The boxplots for each variable is used to identify the outliers, and gain insights on the distributions.

30 40

40

100

40000

444

10

......

MCH

30

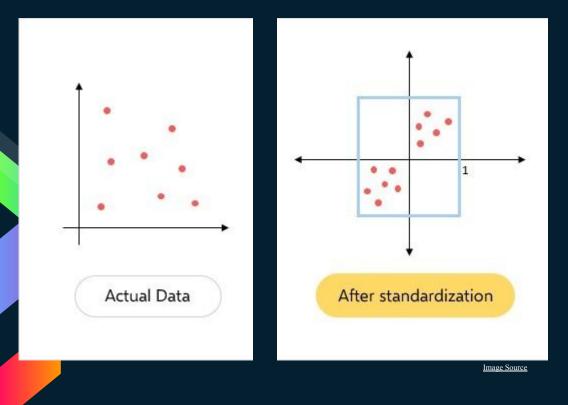
MCH

50

Extreme outliers or erroneous measurements are suspected to be incorrect were removed.

For example, Respiratory rate has one extreme outlier, which was removed.

ВМІ -	1	0.048	0.097	0.18	0.078	-0.041	-0.14	0.15	-0.072	0.075	0.14	0.015	0.0064	0.11	-0.043	-0.084		- 1.00
Systolic_blood_pressure -	0.048	1	0.17	0.22	-0.15	-0.0044	0.11	-0.018	-0.006	0.1	0.03	0.091	0.089	0.11	0.19	-0.094		- 0.75
temperature -	0.097	0.17	1	0.17	-0.16	-0.061	-0.048	0.02	-0.13	-0.043	0.027	-0.018	-0.022	0.0091	-0.024	-0.053		
Urine_output ·	0.18	0.22	0.17	1	-0.095	-0.067	-0.025	0.07	-0.11	-0.12	0.098	-0.088	-0.027	-0.033	0.004	-0.21		- 0.50
RDW -	0.078	-0.15	-0.16	-0.095	1	-0.046	-0.14	0.092	0.15	0.17	-0.11	-0.043	0.0022	-0.0076	-0.038	0.16		
Leucocyte -	-0.041	-0.0044	-0.061	-0.067	-0.046	1	0.2	-0.23	0.066	-0.033	0.042	0.0053	0.045	-0.14	0.0098	0.26		- 0.25
Platelets -	-0.14	0.11	-0.048	-0.025	-0.14	0.2	1	-0.064	-0.11	-0.17	-0.063	0.011	-0.041	0.0019	-0.0091	-0.11		
Basophils -	0.15	-0.018	0.02	0.07	0.092	-0.23	-0.064	1	-0.084	0.046	-0.14	-0.048	-0.0084	0.16	-0.026	-0.13		- 0.00
NT-proBNP -	-0.072	-0.006	-0.13	-0.11	0.15	0.066	-0.11	-0.084	1	0.38	0.042	-0.023	0.14	-0.061	-0.18	0.11		
Creatinine -	0.075	0.1	-0.043	-0.12	0.17	-0.033	-0.17	0.046	0.38	1	0.077	-0.096	0.27	0.0034	-0.093	0.085		0.25
glucose -	0.14	0.03	0.027	0.098	-0.11	0.042	-0.063	-0.14	0.042	0.077	1	0.067	0.11	-0.039	-0.023	0.05		
Blood_sodium -	0.015	0.091	-0.018	-0.088	-0.043	0.0053	0.011	-0.048	-0.023	-0.096	0.067	1	0.12	0.12	0.11	-0.031		0.50
Magnesium_ion -	0.0064	0.089	-0.022	-0.027	0.0022	0.045	-0.041	-0.0084	0.14	0.27	0.11	0.12	1	0.14	-0.061	0.086		
PCO2 -	0.11	0.11	0.0091	-0.033	-0.0076	-0.14	0.0019	0.16	-0.061	0.0034	-0.039	0.12	0.14	1	0.12	0.0022		0.75
EF -	-0.043	0.19	-0.024	0.004	-0.038	0.0098	-0.0091	-0.026	-0.18	-0.093	-0.023	0.11	-0.061	0.12	1	0.04		
outcome -	-0.084	-0.094	-0.053	-0.21	0.16	0.26	-0.11	-0.13	0.11	0.085	0.05	-0.031	0.086	0.0022	0.04	1		
	- IMB	Systolic_blood_pressure -	temperature -	Urine_output -	- NDM -	Leucocyte -	Platelets -	Basophils -	NT-proBNP -	Creatinine -	glucose -	Blood_sodium -	Magnesium_ion -	PC02 -	ь	outcome -		1.00

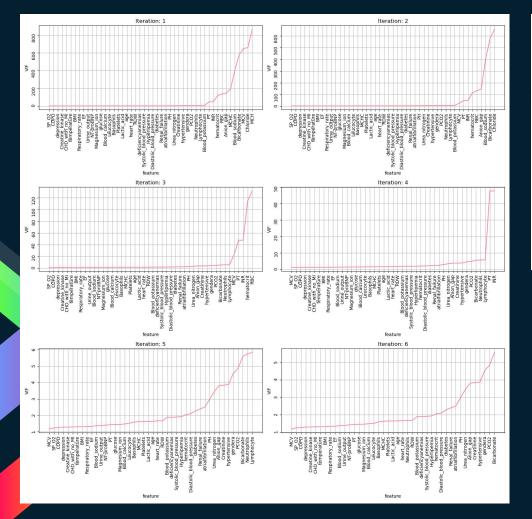

Top 5 Correlated Features

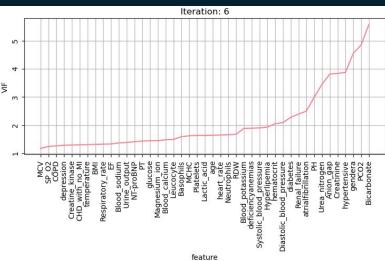
Feature 1	Feature 2	Corr. Coeff.
Urine Output	Systolic blood pressure	0.22195
Basophils	Leucocyte	0.225909
Leucocyte	outcome	0.262817
Magnesium ion	Creatinine	0.266649
NT-proBNP	Creatinine	0.384566

Bottom 5 Correlated Features					
Feature 1	Feature 2	Corr. Coeff.			
Platelets	PCO2	0.001942			
Magnesium_ion	RDW	0.002165			
outcome	PCO2	0.002196			
Creatinine	PCO2	0.003369			
EF	Urine_output	0.004009			

Feature Selection

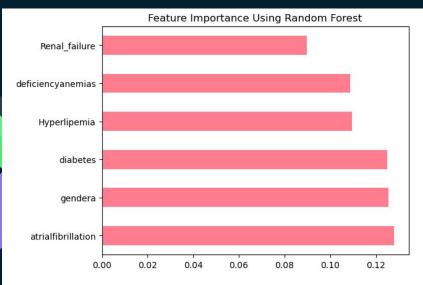
Standard Scaler




Standardizing the features is required due to the differences in standard deviations and magnitudes of the values.

Accomplished by subtracting the mean and dividing by the standard deviation.

Results in a more stable model


Variance Inflation Factor (VIF) is used to remove features whose variance can be explained by other features.

VIF > 5 is the conservative threshold for a feature to be considered highly correlated with the others

Reduce multicollinearity in the dataset.

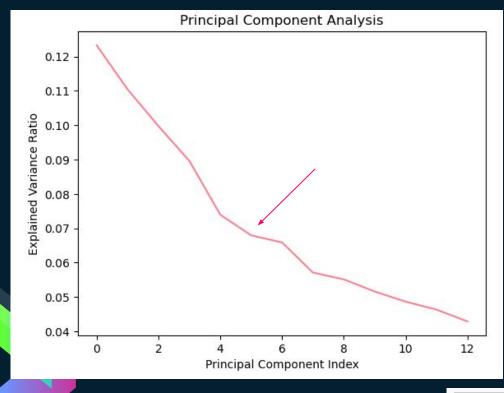
Random Forest & LASSO Regression Feature Selection

Random Forest

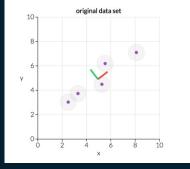
LASSO Regression ($\alpha = 0.01$)

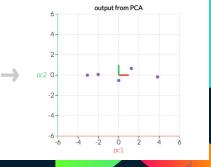
Weight?	Feature
+0.119	Systolic_blood_pressure
+0.083	Platelets
+0.069	glucose
+0.057	RDW
+0.049	Leucocyte
+0.044	Basophils
+0.040	BMI
+0.034	Magnesium_ion
+0.034	temperature
+0.026	EF
+0.021	outcome
+0.013	Urine_output
+0.012	NT-proBNP
+0.011	Blood_sodium
+0.005	PCO2
+0.003	Creatinine

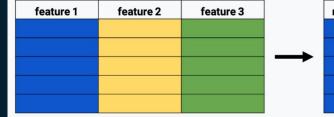
Selected Features


Categorical
gender
hypertensive
atrialfibrillation
CHD_with_no_MI
diabetes
deficiencyanemias
depression
Hyperlipemia
Renal_failure
COPD

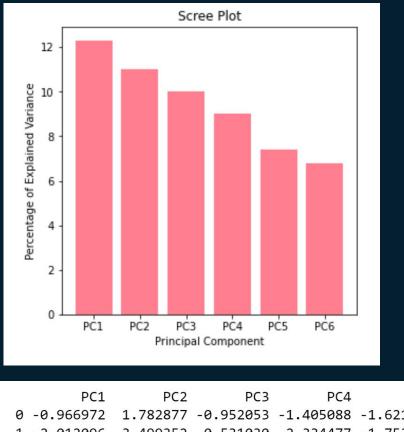
Continuous					
BMI	NT-proBNP				
Systolic_blood_pressure	Creatinine				
temperature	glucose				
Urine_output	Blood_sodium				
RDW	Magnesium_ion				
Leucocyte	PCO2				
Platelets	EF				
Basophils	outcome				


Number of features reduced from 51 to 26




Principal Component Analysis

The Explained Variance Ratio is graphed to determine the elbow. According to the graph, we should keep 6 components.



https://campus.datacamp.com/courses/dimensionality-reduction-in-python/feature-extraction?ex=1


The scree plot is used to determine the number of factors to retain in an exploratory factor analysis (FA) or principal components to keep in a principal component analysis (PCA).

PC	L PC2	PC3	PC4	PC5	PC6
0 -0.966972	1.782877	-0.952053	-1.405088	-1.621522	-1.099229
1 -2.012096	3.499352	0.531030	2.334477	-1.753157	-0.820873
2 -1.483876	6 0.197878	0.131047	-0.317830	1.396916	1.403093
3 -0.950295	5 -1.398700	0.352502	1.029159	0.076503	-0.760649
4 -0.860199	9 1.807029	-1.555054	-0.279860	1.367071	-0.265036

Modeling

Logistic Regression

Input: PCA components resulting from numerical features determined by Lasso feature selection

The accuracy of the logistic model is 67%

The precision of the model on class 0 is 0.95 and on class 1 is 0.17. Out of all the people that the model predicted would die, about 17% actually did.

Accuracy Score	: 0.6748768	472906403							
Confusion Matrix:									
[[125 60]									
[6 12]]									
Classification	Report:								
	precision	recall	f1-score	support					
0.0	0.95	0.68	0.79	185					
1.0	0.17	0.67	0.27	18					
accuracy			0.67	203					
macro avg	0.56	0.67	0.53	203					
weighted avg	0.88	0.67	0.74	203					

The model performs worse on identifying class 1 because we have resampled, resulting in duplicate data points for class 1

GridSearchCV

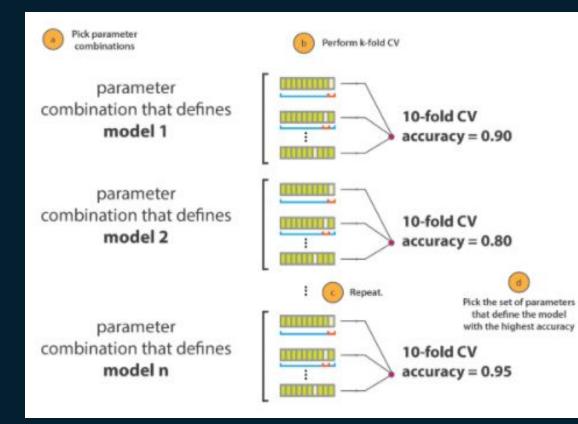
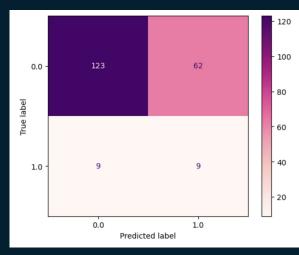



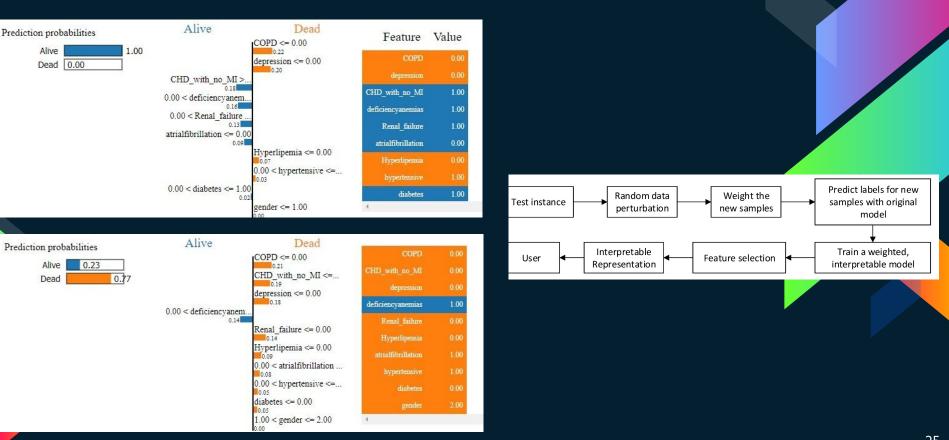
Image Source

Decision Tree

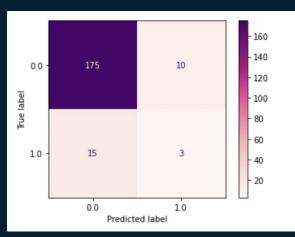
. . .

Hyperparameters: Information Gain, Tree Depth = 12

Input: Categorical features selected from the random forest feature selection


The accuracy of the Decision Tree model is 65%

The precision of the model on class 0 is 0.93 and on class 1 is 0.13. Out of all the people that the model predicted would die, about 13% actually did.


Classification	Report: precision	recall	f1-score	support	
0.0	0.93	0.66	0.78	185	
1.0	0.13	0.50	0.20	18	
accuracy macro avg	0.53	0.58	0.65	203 203	
weighted avg	0.86	0.65	0.73	203	

Decision tree does worse at identifying the actual positive class 1 labeled data points when compared to logistic regression.

LIME (Local Interpretable Model-Agnostic Explanations)

Hyperparameters: Euclidean Distance, 2 Neighbors

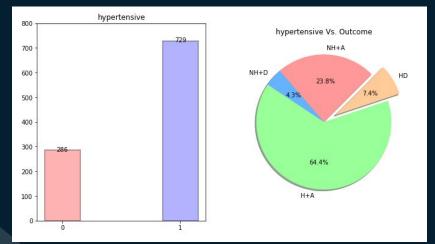
Input: Both continuous and categorical variables were used for the KNN model.

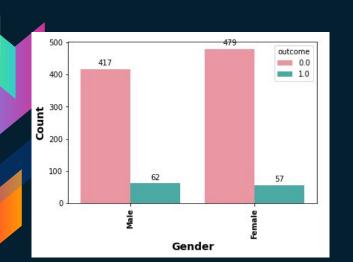
The KNN model was the best performing model with an accuracy of 88%.

The precision of the model on class 0 is 0.94 and on class 1 is 0.23. Out of all the people that the model predicted would die, about 23% actually did.

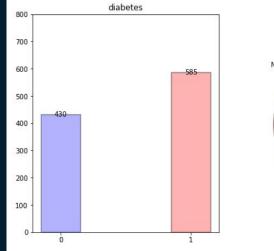
Accuracy Score: 0.8768472906403941 Classification Report: precision recall f1-score

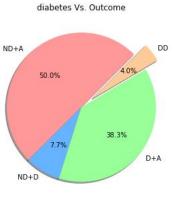
	precision	recall	f1-score	support
0.0	0.92	0.95	0.93	185
1.0	0.23	0.17	0.19	18
accuracy			0.88	203
macro avg	0.58	0.56	0.56	203
weighted avg	0.86	0.88	0.87	203


This model performs better due to the inclusion of both categorical and numerical variables.


Modeling Conclusions

• Unbalanced dataset resulted in modeling difficulties


- Upsampling of label 1 results in duplicate data points, so models do not do well with label 1 patients with different attributes
- If model misclassified one label 1 datapoint, then it will misclassify all potential duplicates
- KNN model accuracy is higher than logistic and decision tree models
 - Additional features being trained on (categorical, continuous)
 - Important features in both sets of features
- Further Analysis
 - Transform continuous features into categorical
 - Obtain data to represent categorical features as continuous
 - Obtain more data points for label 1


Hypothesis Testing

P Value for Hypertensive Vs outcome: 0.0019P Value for Diabetes Vs outcome: 0.0667P Value for Gender Vs outcome: 0.5595

Thank You!

Questions?

